
MINUIT Tutorial

Function Minimization

Reprinted from the Proceedings of the

1972 CERN Computing and Data Processing School,

Pertisau, Austria, 10-24 September, 1972 (CERN 72-21)

Fred JAMES
CERN, Geneva

June 16, 2004

Contents

1 Introduction 1

1.1 The motivation . 1

1.2 Minimization, maximization and optimization 1

1.3 Definition of the problem . 1

1.4 Definition of a minimum . 2

1.5 The shape of the function — Taylor’s series 3

1.6 Non–existence of optimum in general 4

1.7 The role of the computer . 4

2 One–dimensional minimization 6

2.1 Usefulness in n–dimensional problems 6

2.2 Grid search . 6

2.3 Fibonacci and golden section searches 7

2.4 Quadratic interpolation and extrapolation 8

2.5 The success–failure method . 9

3 Stepping methods in many variables 11

3.1 Grid search and random searches . 11

3.2 Single–parameter variation . 11

3.3 The Rosenbrock’s method . 12

3.4 The simplex method . 12

3.5 The conjugate directions method . 14

4 Gradient methods 15

4.1 Calculating derivatives . 15

4.2 Steepest descent . 16

4.3 Newton’s method . 17

4.4 Positive–definite quadratic forms . 18

4.5 Conjugate directions . 20

4.6 Conjugate gradients . 23

I

4.7 Variable metric methods (VMM) . 24

4.8 Davidon’s rank–two formular . 26

4.9 The rank–one formula . 27

4.10 Fletcher’s unified approach to VMM 28

5 Specialized techniques 31

5.1 χ2 minimization . 31

5.2 Likelihood maximization . 32

6 Local and global minima 33

6.1 The problem of multiple minima . 33

6.2 The Gelfand algorithm . 34

6.3 The Goldstein–Price method . 35

7 Some sample problems for minimization routines 36

7.1 Rosenbrock’s curved valley . 36

7.2 Wood’s function in four parameters 36

7.3 Powell’s quartic function . 37

7.4 Fletcher and Powell’s helical valley 38

7.5 Goldstein and Price function with four minima 38

7.6 Goldstein and Price function with many minima 38

7.7 Quadratic function in four parameters 39

7.8 Chebyquad . 39

7.9 Trigonometric functions of Fletcher and Powell 40

References 41

II

1 Introduction

1.1 The motivation

A large class of problems in many different fields of research can be reduced to the
problem of finding the smallest value taken on by a function of one or more variable
parameters. Examples come from fields as far apart as industrial processing (mini-
mization of production costs) and general relativity (determination of geodesics by
minimizing the path length between two points in curved space–time). But the clas-
sic example which occurs so often in scientific research is the estimation of unknown
parameters in a theory by minimizing the difference (χ2) between theory and ex-
perimental data. In all these examples, the function to be minimized is of course
determined by considerations proper to the particular field being investigated, which
will not be addressed here. The main goal is to study the problem of minimization.

1.2 Minimization, maximization and optimization

Although traditionally one speaks of function minimization, some authors refer to
maximization. Of course the two are entirely equivalent since one can be converted
to the other by changing the sign of the function. Thus the problems of minimizing
χ2, maximizing likelihood, minimizing cost, or maximizing efficiency can all be con-
sidered as minimization (or maximization). To avoid committing himself, it is now
fashionable to speak of optimization, to cover both cases. This unfortunately causes
confusion with optimization in control theory where the principle techniques are an-
alytical (calculus of variations) and hence bear little relationship to the numerical
methods used in function minimization as treated here.

To add to the confusion there is the term “programming”, which is also used to mean
minimization (usually specified as linear programming, non–linear programming, or
mathematical programming), a historical usage dating from the time when program-
mers in the modern sense did not exist, and computer users were not programming
but coding.

Other terms used for minimization are extremization and hill–climbing. Since this
can also be used to mean other things, the general conclusion is that in this field you
can not tell a book from its title. While waiting for general agreement as to what
the subject should be called, here it will be refered to as function minimization.

1.3 Definition of the problem

Given a function F (x), the general problem is to find the value of the variable x for
which the function F (x) takes on its smallest value. (As pointed out above, this is
entirely equivalent to finding the x for which the function −F (x) takes on its largest

1

value, but for consistency only minimiziation will be considered here.) The rules of
the game are the following:

1. The function F (x) is assumed not to be known analytically, but is specified by
giving its value at any point x.

2. The allowed values of the variable x may be restricted to a certain range, in
which case one speaks of constrained minimization. Here only unconstrained
problems are refered to.

3. In some cases additional information about the function F may be available,
such as the numerical values of the derivative ∂F/∂x at any point x. Such
knowledge cannot in general be assumed, but should be used when possible.

4. The function F (x) is repeatedly evaluated at different points x until its mini-
mum value is attained.

The method which finds the minimum (within a given tolerance) after the fewest
function evaluations is the best. Occasionally other considerations may be important,
such as the amount of storage required by the method or the amount of computation
required to implement the method, but normally the dominating factor will be the
time spent in evaluating the function.

1.4 Definition of a minimum

The theorems of elementary calculus say that the function F (x) must take on its
smallest value at a point where either:

1. all derivatives ∂F/∂x = 0 (a stationary point), or

2. some derivative ∂F/∂x does not exist (a cusp), or

3. the point x is on the boundary of the allowed region (an edge point).

Although it is sometimes found useful to consider points satisfying the above proper-
ties, this approach of considering essentially the analytical properties of the function
is clearly not well adapted to the rules of the game as outlined above. Indeed, when
one considers that there may be any number of stationary points, cusps, and edge
points, all of which may be arbitrarily hard to find by simply sampling the func-
tion value, the whole problem begins to appear hopeless unless some simplifying
assumptions are made.

The usual simplification consists in abandoning the attempt to find the global mini-

mum and being satisfied with the local minimum. A local minimum may be defined
as a point x0, where for all points x in some neighbourhood arround x0 F (x) > F (x0).

2

Now the situation looks much brighter since the very definition of a local minimum
suggests a general strategy for finding one: one varies x by small steps in a direction
which causes F to decrease, and continue until F increases in all allowed directions
from some point x0. This does not yet tell one how to vary x, but at least it suggests
that a solution can be found.

Here only unconstrained local minimization will be considered, unless otherwise
stated. The problem of global minimization will be treated in ??? section 6.

1.5 The shape of the function — Taylor’s series

With a view to making an intelligent minimizing method, it is of interest to consider
what one might reasonably expect about the behaviour of F . If F represents a
physically meaningful function, one would certainly expect all the derivatives of F
to exist everywhere in the region of interest. Under these conditions one can write
down the Taylor’s series expansion for F about some point x1:

F (x) = F (x1) + gT (x − x1) +
1

2
(x − x1)V (x − x1)

T + . . . ,

where g is the gradient vector

gi =
∂F

∂xi
,

and the matrix V is defined by

Vij =
∂2F

∂xi∂xj

,

all evaluated at x1. Note the difference between xi (the ith variable of x) and xi (the
position vector x at point i).

Although one does not know anything a priori about the convergence of this series,
one does know that as the distance (x−x1) becomes smaller, the higher order terms
become less important, so that one would expect that predicitons based on the low–
order terms should not be very wrong, at least for small steps.

The first term of the above series is constant, so it will not tell much about where
to look for a minimum. The second term is proportional to the gradient g, telling in
which direction the function is decreasing fastest, but since it is linear in g, it does
not predict a minimum and therefore does not say what stepsize to take. Moreover,
when approaching the minimum g → 0 (if it exists) so one will have to go further
and consider the next term. The third, or quadratic term describes a parabolic
behaviour and is therefore the lowest term to predict a minimum. Unlike g one
can expect V to be roughly constant over small regions, since it would be exactly
constant if higher–order terms were zero.

3

One class of problems needs be mentioned in which the above analysis would not
hold at all. This is the field known as linear programming, which limits itself to
minimizing functions which are linear in the parameters, subject to constraints which
are also linear. A linear function can not have a minimum in the sense described
above (a stationary point) but must take on its minimum at a constraint boundary
(edgs point). For such problems the description of the constraints therefore takes on
greater importance than the analysis of the function itself, and will not be considered
here.

1.6 Non–existence of optimum in general

Although we will study and comparing different minimization algorithms (recipes),
the reader should be warned at the outset that in the strict sense of the rules of the
game as stated in section ??? 1.3 above, it will not be possible to show any algorithm
to be superior to any other for all functions. In principle at least, no matter how bad
one algorithm is, or how good another, one can always find a function which will be
minimized faster by the bad method than by the good one. One should keep such
essentially theoretical considerations in mind, but should not be overly discouraged
by them. In particular, certain objective criteria will merge for comparing methods
even though the principal criterion — minimization speed — depends on the function.
In the past there has been an overemphasis on such objective criteria in an attempt
to find the ideal universal minimization algorithm. More recently, the tendency is
to adapt the algorithm to the function, even to the point of introducing a super-
algorithm which would choose a sub–algorithm appropriate to the function at hand.
Such questions of global strategy will be considered later.

The reader should also be warned that in presenting particular algorithms details
will be often omitted which are unimportant to an understanding of the algorithm
although they may be crucial in actually making it work. The original references
should therefore be consulted before programming such algorithms.

1.7 The role of the computer

While the subject here is essentially a mathematically one, it has been profoundly
influenced by the existence of high–speed electronic computers that it would certainly
be unfair not to mention them here. Indeed, real progress in the solving of large–
scale practical problems has come only since the 1960’s, although much of the basic
theory dates back to Newton’s time or even earlier. This is, of course, because of the
renewed interest in numerical minimization techniques for use on computers. As it
is no longer even thinkable to use these techniques for hand calculations, it is best
to place itself immediately in the computer context and to conceive of the function
F (x) rather as a function object which returns a value of F for given input values of
x.

4

One unpleasant consequence of the computer–oriented approach is that one will
often have to worry about rounding–off errors in the function value due to the finite
word length of digital computers. In addition there may be problems of overflow
and underflow. In a real program for minimization or analysis general functions, all
numerical operations must be protected against such numerical exceptions, and this
typically represents more than half of the computer code, sometimes nearly all of it.

5

2 One–dimensional minimization

2.1 Usefulness in n–dimensional problems

We will first consider functions of just one variable, since some general problems can
be seen more easily in this simplest case and also because some n-variable algorithms
contain steps which require one-dimensional minimization. The one-variable problem
is therefore both instructive and useful even though our prime consideration will be
that of more complex problems.

2.2 Grid search

The most elementary search technique consists in choosing k equally spaced points
within the range of the parameter x, evaluating the function at each of the points,
and retaining the lowest value found. If the spacing between points is ∆x, one of
the points is sure to be within ∆x/2 of the true minimum, although in principle it
may not be the point corresponding to the lowest value. Still, if the function does
not vary too wildly over the distances of the order of ∆x, one generally assumes that
this method gives the minimum within a range of about ∆x.

Of course the grid search method has some difficulties. It is not directly applicable
to the usual case where the range of x is infinite. But in this case a simple remedy
is to choose a reasonable range in the middle of the allowed range, and later to shift
the sampling range if the minimum comes out at an end point.

The most serious objection to the grid method is its inefficiecy. Given the assump-
tion that F does not vary too much over a distance of ∆x, many of the function
evaluations are certainly unnecessary, namely those that are in regions where the
function value is known to be large. In other words, the algorithm takes no account
of what it has learned about the function. This inefficiency becomes more striking,
in fact prohibitive, when extended to many variables.

On the other hand, this method has the prized virtues of extreme simplicity and ab-
solute stability. It always converges within the desired tolerance in a known number
of steps and is quite insensitive to the detailed behaviour of the function.

The efficiency of the grid method may be greatly improved by proceeding in several
stages, using a smaller range and smaller step size in each succeeding stage. In this
way each stage takes account of the least value found in the preceding stage, and
the method can be said to converge in the usual sense of increasing accuracy due
to decreasing step size. In the next section we consider optimum ways to arrange
staging in order to obtain the fastest decrease in step size.

6

0
 x1
 x2
 1

Fig. 1

0
 x1
 x2
 1

1- t
 1- t

t

t

0
 x1
 x2
 1
x3

t2

t2

Fig. 2 Fig. 3

2.3 Fibonacci and golden section searches

In order to optimize the grid search, we want to minimize the number of function
evaluations per stage, compatible with maintaining a constant reduction of a factor t
in the step sizes at each stage. This will yield the fastest reduction in step size. One
function evalution tells us nothing about the possible location of a minimum, but as
long as we restrict ourselves to local minima in a given range of x, two points are
sufficient as shown in fig. 1. If F (x1) < F (x2), then there must be at least one local
minimum somewhere in the range 0 < x < x2. Now in this new range, we already
have one point (x1), so that a further reduction in range is possible with only one
new function evaluation, and the procedure can now be continued with only one new
evaluation per stage. It remains to be shown that this can be continued indefinitely
with a constant reduction in step size, and to calculate what that reduction will be.
Clearly we would get the maximum reduction on the first step if x1 and x2 were
very close together, but we must not forget that x1 (or x2) will then be used for the
next stage and should therefore be close to the middle of this new interval as well.
The situation is illustrated in the figs. 2 and 3, where the distances indicated are
imposed by the symmetry of the intervals and the condition that the reduction in
range must be a factor of t in each stage. The new range after evaluation of F (x3)
will be x3 < x < x2 and its length must be t2.

7

This will be possible since there is a real root to the equation:

t2 = 1 − t

t =

√
5 − 1

2
≈ 0.616 .

Since this ratio t is known as the golden section, the minimization technique is called
a golden section search. If the number of stages to be taken is known in advance,
it is possible to improve very slightly on this technique by using a Fibonacci search,
as described for example in Kowalik and Osborne [1]. Although Fibonacci can be
shown to be optimal (in a sense described below), the slight improvement is probably
not worth the added complication. The golden section search is optimal among
algorithms where the stopping point is not decided in advance.

The above techniques are optimal only in the minimax sense, that is they minimize
the maximum number of function evaluations necessary to obtain a given accuracy.
It might be called the pessimist’s optimality, since in game theory it is the best
strategy against an intelligent opponent who is trying to make you lose. It should
therefore be effective in minimizing pathological functions, but in more normal cases
we should expect other methods to be better. Such methods are described in the
following sections.

2.4 Quadratic interpolation and extrapolation

A more optimistic approach consists in studying the expected behaviour of the func-
tion and then hoping that the deviations of the real function from this behaviour are
not too great. From the Taylor’s series analysis of Section 1.5, it would be reasonable
to proceed by assuming that the function is nearly quadratic.

Since a parabola is determined by three points, this method requires the function
to have been evaluated for three different values x1, x2 and x3. It then predicts the
minimum to be at the minimum of the parabola passing through these points. If the
three function values are F1, F2, and F3, the predicted minimum is at x4 given by

x4 =

(x2 + x3)F1

(x1 − x2) (x1 − x3)
+ (x1 + x3)F2

(x2 − x1) (x2 − x3)
+ (x1 + x2)F3

(x3 − x1) (x3 − x2)

2
[

F1

(x1 + x2) (x1 − x3)
+ F2

(x2 + x1) (x2 − x3)
+ F3

(x3 + x1) (x3 − x2)

] .

Considerable simplification results when the three points are equally spaced, a dis-
tance d apart, in which case:

x4 = x2 +
d

2

(F1 − F2)

(F1 + F3 − 2F2)
.

The function is then evaluated at x4, this point replaces one of the first three, and a
new point is predicted, again by quadratic interpolation using the new set of three

8

points. The method terminates when the predicted function value at some new point
agrees with the actual value within a specified tolerance.

This algorithm usually performs quite well when applied to easy (nearly quadratic)
functions, but suffers from a number of instabilities which can be quite serious, as
follows:

i) At any step the three points may determine a parabola with a maximum rather
than a minimum, in which case the method diverges.

ii) If the three points lie nearly in a straight line, the algorithm takes an enormous
step which may cause numerical difficulties as well as diverging.

iii) After each step there is a choice of which two of the three previous points to retain
for the next step. It is usually more convenient and logical to retain the most recent
points, but this may also lead to instabilities by throwing away the best points.

iv) Even without any of the above difficulties, the method may oscillate about the
minimum instead of converging toward it.

All the problems can be fixed by including checks and safeguards in the algorithm,
but the remedies always involve abandoning, at least temporarily, the quadratic
interpolation step. The best remedy is probably to reserve the method for well-
behaved functions and to abandon it entirely as soon as trouble arises. It is most
often used as the last step in algorithms which depend principally on other methods,
since physical functions are usually quite parabolic in the immediate vicinity of the
minimum.

When derivatives of the function are available, variations of quadratic interpolation
are possible, using instead of three points to determine the parabola, either two func-
tion values and one first derivative, or the function value and the first two derivatives
at one point. These variations tend to be even more unstable than the basic method,
since they use information from fewer points.

2.5 The success–failure method

A good compromise between the stability of the grid search and the rapid convergence
of quadratic interpolation is found with the success-failure technique of Rosenbrock
[2]. A start point x0 and initial step size d are required, and the function is evaluated
at x0 and x0 + d. The first step is termed a success if F (x0 + d) < F (x0), otherwise
it is a failure. If it is a failure, d is replaced by −βd, where β is a contraction factor
less than one, and the test is repeated. If it is a success, x0 is replaced by x0 + d, d
is replaced by αd, where α is an expansion factor greater than one, and the test is
repeated. The process continues in this way until the function values change by less
than a specified amount, The numerical values usually used for the expansion and
contraction parameters are α ≈ 3.0 and β ≈ 0.4.

An interesting feature of this method is that a local minimum is always bracketed

9

whenever a success is followed by a failure. When this happens, the middle one
of the last three points is always lower than the outer two, so that one is in a
favourable position for trying a quadratic interpolation step. The success-failure
method, with one quadratic interpolation step each time a success is followed by a
failure, is probably the most effective one-dimensional technique for use on general
functions although in special cases other methods may be superior.

10

START

MIN
x2

x1

Fig. 4

x1

START

x2

MIN

Fig. 5

3 Stepping methods in many variables

3.1 Grid search and random searches

An excellent illustration of the enormous increase in complexity in going to spaces
of high dimensionality is afforded by the grid search technique in many variables. In
order to localize a minimum to 1% of the range of one variable by this technique
requires 100 function evaluations; in ten variables the number of points required is
1020. Clearly we can forget about this method when more than one or two parameters
are involved.

In fact it is a general rule in function minimization, as in function integration, that
one should not expect good one-dimensional techniques to be good when extended
to higher dimensionality. Experience with integration suggests that a Monte Carlo

search is more efficient than a grid search in many dimensions. The Monte Carlo
technique consists in choosing points randomly according to some distribution (usu-
ally uniform or normal).

But even when these methods are refined by using variable search ranges, they prove
far too slow for general use and we must turn to more efficient techniques.

3.2 Single–parameter variation

Since the condition for a minimum which is a stationary point in n variables xi

is the vanishing of all n first derivatives ∂F/∂xi, it is natural to try to make
each derivative vanish separately, one after the other. This is the old method
of single parameter variation, where one seeks a minimum with respect to one
variable at a time using one of the techniques described earlier. Of course when you
have finished minimizing with respect to x2 you may no longer be at a minimum
with respect to x1, so you generally have to start all over again, but the process
usually does converge, as illustrated for two variables in fig. 4. Here the curves rep-
resent contours of equal function value, and the straight lines show the steps taken

11

in minimizing F with respect to x1, then x2, then x1, etc. In this case the method
converges nicely after only four single-parameter minimizations.

Consider now the function represented by the contours shown in fig. 5. Here the
method proceeds much more slowly because of the narrow valley. It still converges,
but as the valley becomes narrower, the convergence becomes arbitrarily slow.

Such behaviour in many dimensions causes this method to be generally considered
as unacceptably slow.

Two of the more successful improvements aimed at avoiding such behaviour are due
to Hooke and Jeeves [3] and Rosenbrock [2]. We discuss the latter below.

3.3 The Rosenbrock’s method

Rosenbrock’s algorithm [2] starts by performing single-parameter minimizations as
above. Then when one full cycle of all parameters has been completed, a new set
of orthogonal axes is defined with one axis taken as the vector from the start point
to end point of the cycle. This vector points in the direction of previous over-all
improvement and is expected to be a good direction for future improvement. In the
case of the narrow valley seen above, it should point more or less along the valley
and avoid the zig-zag behaviour. The next cycle of single-variable minimizations is
performed using multiples of the newly defined axes as variables.

The Rosenbrock method generally performs well, being quite stable and capable of
following narrow valleys, but as the number of variables increases, the efficiency
drops, probably because the new axis defined by past improvement is the only ‘in-
telligent direction’ used in the next cycle. All the other minimization directions are
simply chosen orthogonal to the first one. Also, its terminal convergence is slow
compared with the more ‘quadratic’ methods described in Section 4.

Another technique, that of Davies, Swann, and Campey [4] (unpublished, see Ref.
4) is similar to Rosenbrock’s and will not be described here.

3.4 The simplex method

One of the most successful stepping methods in many variables is that of Nelder and
Mead [5], based on the simplex. A simplex is an n-dimensional figure specified by
giving its n + 1 vertices. It is a triangle in two dimensions, a tetrahedron in three,
etc. The algorithm takes the name simplex because at each step the information
it carries about the function consists of its values at n + 1 points. One can easily
visualize how the method works by considering the two-dimensional case as in fig. 6.
The three starting simplex points are somehow chosen (perhaps randomly) and the
function is evaluated at each point. Let the point PH be that at which the function
value is highest (worst) and PL that at which it is lowest. Let P̄ be the centre-of-mass

12

x2

x1

P

P

P

P

P1 = PL

P3 = PH

P2

_

Fig. 6

of all points in the simplex except PH ; that is:

P̄ =
1

n

{

n+1
∑

i=1

Pi − PH

}

.

From the original simplex, a new simplex is formed by replacing PH by a better
point if possible. The first attempt to find a better point is made by reflecting
PH with respect to P̄ , producing P ∗ = P̄ + (P̄ − PH). If F (P ∗) < F (PL), a new
point is tried at P ∗∗ = P̄ + 2(P̄ − PH). If F (P ∗) > F (PH), a new point is tried at
P ∗∗ = P̄ −1/2(P̄ −PH). The best of the new points then replaces PH in the simplex
for the next step, unless none of them is better than PH . In the latter case, a whole
new simplex is formed around PL, with dimensions reduced by a factor of 0.5.

Variations on the method are possible by using different contraction or expansion
factors when searching along the line from PH through P̄ (dotted in diagram). An-
other interesting possibility is to attempt a quadratic interpolation step along the
dotted line whenever three points have been determined (PH , P ∗, P ∗∗). However, one
must be careful not to accept a point too close to P̄ , for then the simplex collapses
into a line (or in general a hyperplane of n − 1 dimensions) from which it can never
recover.

The simplex algorithm, being designed always to take as big steps as possible, is
rather insensitive to shallow local minima or fine structure in the function caused by
rounding errors, statistical errors (Monte Carlo output), etc. Another of its virtues
is that of requiring few function evaluations, usually one or two per iteration. In
addition, each search is in an ‘intelligent’ direction, pointing from the highest value
to the average of the lowest values. Compare this with Rosenbrock’s method, where
really only the principal axis is an ‘intelligent’ direction, and all other searches are
for exploring along orthogonal axes to determine a new principal axis.

13

A convenient convergence criterion for the simplex method is based on the difference
F (PH)−F (PL). The iterations are stopped when this difference is less than a preset
value. As a final step, the function is evaluated at P̄ , which is often slightly better
than F (PL).

In view of the danger mentioned above—of the simplex collapsing into a hyperplane
of dimension n − 1—it has been suggested to use n + 2 or more points rather
than n + 1 at each step. I have tested this idea, which is equivalent to introducing a
dummy parameter of which the function is independent, and have always found the
efficiency of the algorithm to decrease under these conditions.

3.5 The conjugate directions method

This method does not require information about the derivatives of the function, but
the exploration requires the material developed in Chapter 4, so it is discussed in
Section 4.5.

14

4 Gradient methods

4.1 Calculating derivatives

I will call a gradient method any technique which uses information from a very small
range of the variables (i.e. essentially derivatives) to predict good trial points rela-
tively far away. This does not necessarily mean that they follow the gradient, but
only that the gradient, and perhaps higher derivatives, are used or estimated.

It is of course possible in most cases to calculate analytically the numerical values
of the derivatives of a function, just as it is possible to calculate the value of the
function itseif. However, it is often inconvenient and dangerous if the algebra is
complicated, so that very often we are faced with minimizing a function for which no
derivatives are provided. Since the most powerful algorithms discussed below require
derivatives, a general minimization program must be able to estimate the derivatives
of the function by finite differences.

A first derivative may be estimated from

∂F

∂x

∣

∣

∣

∣

x0

≈ F (x0 + d) − F (x0)

d
,

where d is a ‘small’ displacement. The error will be, to lowest order in the Taylor’s
expansion,

δ ≈ d

2
· ∂2F

∂x2

∣

∣

∣

∣

x0

.

It is therefore advantageous to make d as small as possible, but still large enough so
that the rounding error in the computation of F does not become larger than the
error introduced by δ. Since the second derivatives may not be known, it may not
be possible to find an optimum step-size d, so we may just have to close our eyes
and guess.

A much safer method would be to use points chosen symmetrically on either side of
x0 giving

∂F

∂x

∣

∣

∣

∣

x0

≈ F (x0 + d) − F (x0 − d)

2d
,

for in this case the error δ vanishes to second order and the lowest order term is
proportional to the third derivative. A disadvantage of this method is that it requires
2n function calls to estimate the n first derivatives, whereas the asymmetric steps
require only n + 1 [or only n if F (x0) has to be evaluated anyway]. An advantage
of the symmetric steps method, however, is that it gives the second derivatives as a
by-product [assuming F (x0) known]:

∂2F

∂x2
≈ F (x0 − d) + F (x0 + d) − 2F (x0)

d2
,

15

d

x1

x2

d

Fig. 7

START

λ2

λ1

MIN

Fig. 8

and from the relationship for the error δ in the asymmetric method, a conservative
upper limit of the uncertainty in the first derivative results assuming at least that
the symmetric formula gives a smaller error than the asymmetric one. A complete
treatment of step sizes is beyond the scope of these lectures but can be found in a
paper by Stewart [6].

The numerical evaluation of second derivatives is facilitated by the fact that they
should be approximately constant over small regions, so that symmetrical steps are
usually not necessary. Unfortunately, however, there are a lot of second derivatives to
evaluate; since they form a symmetric n × n matrix, there are n(n+1)/2 independent
components, requiring at least n(n − 1)/2 points in addition to those required for
the symmetric derivatives. For two parameters, a minimum point pattern is shown
fig. 7. The odd point (for the mixed second derivative) could have been chosen in
any corner. The two-dimensional diagram is somewhat misleading since for large n,
the number of ‘odd points’ is n times larger than the number of ‘symmetric’ points.

4.2 Steepest descent

As soon as the function’s first derivatives are known, it is natural to follow the
direction of the negative gradient vector in seeking a minimum, since this is the
direction in which the function is decreasing the fastest. Such a technique was used
by Cauchy more than a century ago, and is the basis of what is now known as the
method of steepest descent.

This method consists of a series of one dimensional minimizations, each one along the
direction of local steepest descent (gradient) at the point where each search begins.
Of course the direction of the gradient is not constant along a line even for a general
quadratic function, so we expect many iterations to be necessary, but the method can
be shown to converge for a quadratic function. Let us follow its progress for a typical
function whose contours are shown in fig. 8. We immediately see an unfortunate
property of the successive search directions: if each linear minimization is exact,

16

x1

 x2

g

Fig. 9

successive searches must be in orthogonal directions. In two dimensions, this yields
steps which look just like the single parameter variation method (fig. 5) with the
axes rotated to line up with the gradient at the start point. In many dimensions the
situation is not quite so bad, but successive directions are still orthogonal and the
algorithm cannot be considered acceptable. It is in fact easy to draw contours for
a reasonably well-behaved hypothetical function (fig. 9) where the direction to the
minimum is just perpendicular to the gradient.

4.3 Newton’s method

It is clear that since a general quadratic function is determined by specifying its
value, first derivatives, and second derivatives at a point, it can be minimized in one
step if and only if all this information (or its equivalent) is taken into account. Let
us write a quadratic function as

F (x) = F (x0) + gT (x − x0) +
1

2
(x − x0)

T G(x − x0) ,

where the gradient g is evaluated at x0 and the second derivative matirx

G

is a constant. Then the minimum is given directly by

xm = x0 − G−1g = x0 − Vg ,

where the inverse of the second derivative matrix is the covariance matrix V.

This is then the many-dimensional equivalent of quadratic interpolation discussed
earlier, and it is subject to the same sort of difficulties when applied as an iterative

17

technique to general non-quadratic functions. But let us first point out its good
features:

i) the step size is no longer arbitrary, but is prescribed precisely by the method;

ii) the step directions are no longer necessarily along the gradient vector but take ac-
count of parameter correlations (narrow valleys or ridges) through the mixed second
derivative terms.

In practice, however, the method is unstable, essentially for the reasons given in
Section 2.4. In particular, it diverges whenever the matrix G (or V) is not positive-
definite (see next section). In its unmodified form the method is used only when the
minimum is known to be very close or when the function is known to be positive
quadratic (for linear least squares). However, it is clearly a powerful technique and
is worth studying in some detail since all the most successful algorithms are based
on Newton-like steps, as discussed below.

4.4 Positive–definite quadratic forms

We pause here briefly to consider the properties of quadratic forms useful for under-
standing the more powerful gradient methods. In one dimension the description is
simple; a general quadratic form can be written

F (x) = a + gx +
1

2
Gx2 ,

where g = ∂F/∂x at x = 0, and G = ∂2F/∂x2 also at x = 0. This function has a
minimum if and only if G ≥ 0. If G = 0, the minimum is at infinity, The minimum
(if it exists) is at x = −g/G. When using a quadratic approximation to minimize a
general non-linear function, it makes sense to take a step to x = −g/G only if G > 0
since otherwise we step to a predicted maximum or to infinity. A possible remedy if
G < 0 is to take a step x = −g; that is, to set G arbitrarily equal to unity so that
the step will at least be in the right direction although it will now have arbitrary
length. Consideration of fig. 10 shows that this is the only thing we can do unless
more information is available, since the quadratic part of the function is not convex

or positive-definite at the point x0.

These arguments may now be extended to many dimensions where g becomes the
gradient vector g, and G becomes the second derivative matrix G. Then the Newton
step to x = −G−1g makes sense only if G (hence G−1) is a positive-definite matrix,
since only then does the quadratic form

F (x) = a + gT · x +
1

2
xTVx

have a minimum. If G is singular, the predicted minimum (or maximum) is not
unique.

18

G > 0
G < 0
F

-g

-g/G

x

x0

Fig. 10 Fig. 11

Unfortunately there is no simple way of telling, in general, if a matrix is positive-
definite by inspecting individual components, but we can at least state some of
the many useful properties of such matrices. Two necessary (but not sufficient)
conditions for a (square, symmetric) matrix to be positive-definite are:

i) the diagonal elements must be positive (this is in fact sufficient for a 1 × 1 matrix);

ii) the off-diagonal elements must obey G2
ij < GiiGjj .

[Properties (i) and (ii) together are sufficient for a 2 × 2 matrix.] While the above
conditions are easy to check, they are not in general sufficient. Some necessary and

sufficient conditions are the following:

iii) All the eigenvalues of the matrix are positive. This is generally a rather difficult
calculation and is usually approximate.

iv) The determinants of all the upper left square submatrices (formed as indicated
in the diagram in fig. 11) are positive. This is probably the easiest method.

v) The scalar eTGe is positive for all vectors e This is usually taken as the definition
of a positive-definite matrix, and explains why a positive-definite matrix yields a
quadratic form with a minimum: the function increases in all directions from e = 0.

vi) The inverse G−1 = V is positive-definite.

Now suppose that G−1 is calculated for a Newton step and turns out to be non-
positive-definite. In analogy to the one dimensional case we would simply take
G = I, the unit matrix, and the Newton step would become a steepest-descent step
of arbitrary length, which is probably not so bad an idea and is in fact often done.
But we can do better by trying to make a positive-definite matrix which is as ‘close’
as possible to the unacceptable G. This is done as follows: The matrix (G + λI)−1

is used instead of G−1, where λ is greater than the largest negative eigenvalue of G.
This requires a fair amount of calculation and so is not very convenient, but it is
quite appealing since it amounts to taking a step which is intermediate between a
Newton step and a steepest-descent step (for large values of λ the step becomes short
and in the direction of the gradient).

19

If we are willing to calculate eigenvectors as well as eigenvalues, the non-positive-
definiteness can be turned into an advantage, since the eigenvector corresponding
to a negative eigenvalue indicates a direction (or directions) in which the negative
first derivative is increasing in magnitude rather than decreasing. This suggests an
especially fruitful direction for a single-parameter-variation step which should not
only lead to a good decrease of the function value but should also lead more quickly
to a region of positive-definiteness.

Minimization methods based on variations of Newton’s method as suggested by the
above considerations are usually called quasi-Newton methods. Many such algo-
rithms have been published and some are quite successful, but the field is still open
for new ideas.

The principal drawback of such techniques is the repeated evaluation and inversion
of the second-derivative matrix. The calculation of the second derivatives usually
requires a rather long time, proportional to n2, and the matrix inversion, although
usually faster, increases with n like n3.

One of the most interesting results concerning quadratic forms is the basis of a
collection of related techniques described in the next sections, which do not require
explicit repeated evaluations of G.

4.5 Conjugate directions

The vectors di and dj are said to be conjugate with respect to a positive-definite
symmetric matrix A if

dT
i Adj = 0 for i 6= j .

If A is the unit matrix I, the conjugate vectors d would be orthogonal, so conjugacy
can be thought of as a generalization of orthogonality. A set of n conjugate vectors
span an n-dimensional space, and any point in the space can therefore be expressed
as a linear combination of n conjugate vectors.

Although the matrix A does not uniquely define a set of conjugate vectors, such a
set can always be constructed by a procedure similar to the Gram-Schmidt orthog-
onalization method. Let us start for example with an arbitrary vector d1. Then the
vector

d2 = Ad1 − dT
1 AAd1

dT
1 Ad1

d1

can be seen to be conjugate to d1 since the product dT
1 Ad2 vanishes identically.

The process can then be continued in the same way to construct a d3 which will be
conjugate to both d1 and d2, and so forth up to dn.

20

Such vectors become interesting for minimization problems when they are conjugate
with respect to the hessian (second derivative) matrix G. In this case a theorem
of Fletcher and Reeves [7] states that a sequence of linear minimizations in each of
the n conjugate directions will minimize a general quadratic function of n variables.
That this is true can be seen quite easily as follows. Let the quadratic function be

F (x) = F (0) + gT x +
1

2
xTGx

and the n directions di be conjugate with respect to G:

dT
i Gdj = 0 , i 6= j .

Then the vectors x and g can be expressed as linear combinations

x =
∑

i

yidi

g =
∑

i

cidi ,

so that the general quadratic becomes

F (x) = F (0) +

(

∑

i

cid
T
i

)(

∑

j

yjdj

)

+
1

2

(

∑

i

yid
T
i

)

V

(

∑

j

yjdj

)

.

Now if the last term above is regrouped as a double sum, the terms with i 6= j
drop out because of the conjugacy condition, so that the whole expression can be
simplified as

F (x) = F (0) +
∑

i

∑

j

cid
T
i djyj +

1

2

∑

j

y2
j d

T
j Gdj

= F (0) +
∑

j

(

bjyj + b′jy
2
j

)

where
bj =

∑

i

cid
T
i dj

and
b′j = dT

j Gdj

are constants. By expressing the quadratic in terms of y instead of x we have sepa-
rated it into a sum of independent one-parameter quadratic functions. A minimiza-
tion with respect to yi (a linear minimization along the direction di) will therefore
be independent of the minimizations along the other conjugate directions, which
demonstrates the validity of the theorem.

The above theorem tells us what is ‘wrong’ with the single-parameter-variation
method: we should be using conjugate directions rather than simply orthogonal

21

d1

x1

x0

_

_
x1

_

x2

Fig. 12

axes. However, since the construction of conjugate vectors seems to require knowl-
edge of the hessian G, this does not yet help very much in practice, for if we knew G
(and g) we could minimize a quadratic immediately by means of Newton’s method,
and would not need to use n linear minimizations.

The usefulness of conjugate directions comes from the fact that there are ways of
determining such directions implicitly, without first evaluating the entire hessian ma-
trix G. Of course, by the time all n conjugate directions are determined, by whatever
method, information equivalent to the matrix G must have been determined. How-
ever, by that time considerable minimization may already have been performed, as
in the method implied by the following theorem.

If x0 and x1 are minimum points in two parallel subspaces, then the direction x1−x0

is conjugate to any vector which lies in either subspace. This can easily be seen in
two dimensions as illustrated in fig. 12. Since x0 is a minimum along the direction
d1 the gradient of F at x0 must be orthogonal to d1:

dT
1 (g + Gx0) = 0 ,

where g is the gradient at x = 0. Similarly at x1:

dT
1 (g + Gx1) = 0 .

Subtracting the above equations, the first terms drop out and we have:

dT
1 G(x1 − x0) = 0 ,

showing that (x1 − x0) is conjugate to d1.

Unfortunately, extending this algorithm to three dimensions requires three additional
minimizations in order that the third direction be conjugate to both of the first two,
so that convergence for a general quadratic in n variables is obtained only after n

22

iterations involving in all n(n + 1)/2 linear minimizations. Since this is just the
number of independent elements in the second derivative matrix, we would be better
off for quadratic functions to calculate this matrix directly and avoid the linear
searches. On the other hand, for non-quadratic functions the conjugate directions
method should be much more stable since it proceeds by a series of linear searches in
independent directions and still guarantees convergence in a finite number of steps
once a quadratic region is entered. In addition, this method has the advantage of
requiring neither first nor second derivatives of the function. (Strictly speaking, then,
it should have been discussed in Section 3 rather than in this section.)

A disadvantage of the algorithm described above is that for each iteration, n min-
imizations are performed in direction d1, whilst only one is performed in direction
dn. This undesirable asymmetry is largely avoided in a variation due to Powell [8].

4.6 Conjugate gradients

When the first derivatives of the function are calculated, a somewhat more elegant
method can be used, known as the method of conjugate gradients [7]. Suppose that
the function and its gradient are evaluated at two points x0 and x1, giving differences:

∆x = x1 − x0

∆g = g
1
− g

0
.

Then if the function were quadratic with hessian V we would have

∆g = G ∆x .

Any vector d1 orthogonal to ∆g would then be conjugate to ∆x:

dT
1 ∆g = dT

1 G ∆x = 0 ,

which immediately suggests a method for obtaining conjugate directions without
knowing G, based on the change in gradient along a previous direction.

In the method of conjugate gradients, successive one-dimensional minimizations are
performed along conjugate directions with each direction being used only once per
iteration. The first direction is taken as d0 = −g

0
, the steepest descent vector at

x0. Let the minimum along this direction be at x1 where the gradient is g
1
. Then

the next search direction d1, which we want to be conjugate to d0 must be a linear
combination of the only vectors we have at hand, namely:

d1 = − g
1

+ bd0 .

The conjugacy condition is

dT
1 Gd0 = dT

1 G(x1 − x0) = 0

23

or
(−gT

1
+ bdT

0)Gd0 = (−gT

1
− bgT

0
)(g

1
− g

0
) = 0 .

Since x1 is a minimum along direction d0 = −g
0
, the direction g

0
is orthogonal to

the gradient at x1, so that gT

1
g

0
= 0. We are then left with

b =
gT

1
g

1

gT
0
g

0

so that the new conjugate direction is

d1 = − g
1

+

(

gT

1
g

1

gT
0
g

0

)

d0 .

This process can be continued to generate n directions, each one conjugate to all
the others. It turns out that the same simple formula holds for all the successive
conjugate directions

di+1 = − g
i+1

+

(

gT

i+1
g

i+1

gT
i
g

i

)

di .

4.7 Variable metric methods (VMM)

In analogy with the methods of differential geometry and general relativity, it is
convenient to consider the properties of the function F (x) as being in fact properties
of the space of the variables x. This was already used rudimentarily when generalizing
from the usual orthogonal coordinate axes to a system defined by axes pointing in
conjugate directions. One now wishes to go further and be able to express the
properties of the function F geometrically as the properties of the non–Euclidean
space of its variables x.

The fundamental invariant in a non–Euclidean space is the squared distance element

∆s2 = ∆xTA∆x,

where ∆x is a differential coordinate displacement and A is a covariant metric tensor

which determines all the properties of the space under consideration. When A is just
the unit matrix I, the above formula for ∆s2 just expresses the Pythagorean theorem
for an n–dimensional Euclidean space. When off–diagonal elements of A are non–
zero and when the elements are allowed to vary as functions of x, a generalized
non-Euclidean space is generated.

It is easily verified that the second derivative (Hessian) matrix G behaves under co-
ordinate transformations like a covariant tensor and will be identified with the metric
tensor of our space. The inverse V = G−1 is a contravariant tensor and becomes the
contravariant metric tensor. (For a discussion of covariant and contravariant tensors,

24

see for example chapter 10 of [4].) This immediately enables to construct two scalar
(invariant under coordinate transformations) quantities:

∆s2 = ∆xTG∆x (4.1)

is the square of the generalized distance between the point x and the point x + ∆x.
When F is a χ2 function which is minimized to determine some best parameters x,
the physical meaning of the generalized distance ∆s is just the number of “standard
deviations” x + ∆x is away from x. That is, the use of the metric tensor V enables
one to scale the distance ∆x so that it comes out as a physically (or statistically)
meaningful invariant quantity instead of being expressed in arbitrary units (or a
mixture of arbitrary units!).

And

ρ = gTVg (4.2)

is twice the difference between the function value at the point where V and the
gradient g are calculated and the minimum of a quadratic form with hessian ma-
trix G = V−1. That is, ρ/2 is the expected (vertical) distance to the minimum if
the function F were quadratic. This provides an important scale–free convergence

criterion for any method which provides approximations to V and g.

When the function F is quadratic, G is constant everywhere and, in the sense out-
lined above, this is equivalent to working in a space with constant metric. For real
non–linear functions higher–order terms are expected to be small but not negligi-
ble, so that one can think of working in a space with a slowly–varying metric tensor.
Minimization methods based on this approach are known as variable metric methods.
They differ from the basic Newton–Raphson method in the sense that the matrix G
is not completely re–evaluated at each iteration, but is assumed to be well approx-
imated by taking the G of the previous iteration and apply a correction based on
new information from the current iteration. This correction is known as the matrix

updating formula, which in general differs from method to method.

Variable metric methods therefore proceed generally by the following steps:

1. A starting point x0 is given, the gradient g0 at that point is calculated, and
some approximation to G−1, say V0, is constructed. The starting V0 may
be only the unit matrix, or it may actually be the inverse of the full second
derivative matrix.

2. A step is taken to x1 = x0 − V0g0, which would be the minimum if F were
quadratic and if V0 were the true covariance matrix. Since x1 is not the position

25

of the true minimum in the general case, it is usual to perform a linear search
along this direction, finding the α which minimizes F (x0 − αV0g0). In either
case let the new point be called x1 and let the gradient calculated at x1 be g1.

3. The matrix V is corrected using an updating formula of the form

V1 = V0 + f(V0,x0,x1, g0, g1).

Then g0 is replaced by g1, x0 by x1, and V0 by V1, and steps (2) and (3) are repeated
until some convergence criteria are satisfied.

The different methods differ chiefly in the choice of updating function f , as de-
scribed in the following sections, and in the extent to which linear minimizations
are necessary. Less important variations involve the starting approximation V0 and
various safeguards against “unreasonable” steps and non–positive–definiteness as for
the Newton techniques.

4.8 Davidon’s rank–two formular

Probably the first — and perhaps still the best — variable metric method was
developed in 1959 by Davidon and later published in simplified form 1963 by Fletcher
and Powell [9]. Davidon’s updating formula for the covariance matrix is the following:

V1 = V0 +
δδT

δTγ
− V0γγTV0

γTV0γ
,

where the changes in position and gradient on the last step were

δ = x1 − x0

and
γ = g1 − g0,

and V0 was the previous estimate of the covariance matrix. This is called the rank–
two formula since the correction V1 − V2 is a matrix of rank two in the space of δ
and V0γ as can be seen directly by inspection of the formula.

One fundamental requirement of an updating formula is that the new matrix satisfies
the relationship

V1γ = δ,

since γ = Gδ for a quadratic function with hessian G. It is easily seen that Davidon’s
formula satisfies this requirement:

26

V1γ =

[

V0 +
δδT

δTγ
− V0γγTV0

γTV0γ

]

γ (4.3)

= V0γ +
δδTγ

δTγ
− V0γγTV0γ

γTV0γ
(4.4)

= V0γ + δ − V0γ (4.5)

= δ. (4.6)

An unfortunate feature of the Davidon algorithm is the need to perform at each
iteration a linear minimization along the direction given by a Newton step, −Vg.
This linear search step is, however, necessary in order to assure convergence for
general functions. Fletcher and Powell show in [9] that if the starting approximation
to V is positive–definite, then V will remain positive–definite after all updatings,
but they have to use the fact that each iteration is a linear minimization, that is

gT
1 V0g0 = 0.

It can be shown that this method is quadratically convergent, at most n iterations
(n line searches and n gradient calculations) being required for an n–dimensional
quadratic form.

4.9 The rank–one formula

In an effort to avoid the linear minimizations required by Davidon’s algorithm, sev-
eral workers have independently developed an interesting updating formula of rank
one. In this case Davidon in 1968 was the first to publish an algorithm [10] based
on the formula, and Powell [11] has summarized the properties of this formula and
of algorithms based on it.

The rank–one updating is:

V1 = V0 +
(δ − V0γ) (δ − V0γ)T

γT (δ − V0γ)

It can be shown [11] that this is the only formula of rank two (or less) for which not
only V1γ = δ but:

V1γi = δi,

where δi and γi are the step and the gradient changes at any previous iteration. This
is known as the hereditary property, sine V1 can be said to inherit the fundamental
property Vγ = δ with respect to all previous iterations (up to n).

The hereditary property assures that after n iterations, V1 will be the true covariance
matrix if F is quadratic, no matter what steps were taken (almost), so that if Newton

27

steps are taken, convergence for a quadratic function is assured after n iterations,
without the need for linear minimizations.

In addition, the rank–one formula is symmetric, in the sense that the expression for
V−1

1 in terms of V−1
0 is the same as that for V1 in terms of V0 provided δ and γ are

interchanged. The meaning of this symmetry property will be discussed in the next
section.

But, as nothing is perfect, so the elegance and mathematical beauty of the ran–one
formula hide a number of numerical and practical difficulties which can make it
highly unstable when applied to a general function. In particular, if the vector γ
happens to be orthogonal to the vector (δ − V0γ), the denominator goes to zero in
the updating formula, and an unbounded correction is possible. Since these vectors
may be orthogonal, even for a quadratic function, the problem of numerical instability
is a serious one.

Moreover, the matrices V1 do not really converge to the true covariance matrix in the
usual meaning of the term convergence. Although it is true that V1 will be equal to
the true covariance matrix at the nth step for a quadratic function (barring numerical
difficulties), the intermediate matrices V may vary wildly from step to step, so that
on any particular iteration V1 may be a rather poor approximation. This is especially
dangerous when the function is not quadratic, since the large corrections necessary
in later iterations will generally not compensate properly the fluctuations in early
steps. Also, there is no guarantee that intermediate matrices will remain positive–
definite, and hence no guarantee of a reduction in the value of F at each step, even
for a quadratic F.

All these difficulties can, of course, be overcome by programming enough safeguards
into the algorithm, but this can only be done at the expense of efficiency and some-
times only by abandoning temporarily the updating formula itself, which makes it
lose some of its appeal.

Different approaches are possible depending on whether it is considered important
to maintain positive definiteness as in the Davidon algorithm [10], or important not
to abandon the exact rank–one formula as in Powell’s method [11].

4.10 Fletcher’s unified approach to VMM

The existence of two different updating formulas with very different properties gener-
ated a lot of interest in variable metric methods (VMM) during the years 1967–1971,
since it showed VMM to be very promising and left many questions unanswered,
such as:

1. How can it be that the rank–one and rank–two formulas have such different
properties? What is the relationship between them?

2. Is there a way to combine the best properties of both formulas?

28

3. Are there other good formulas? Is it posible to define a class of “admissible”
formulas?

A certain understanding of the above problems was made possible by the work of a
number of people. In particular, a paper by Fletcher [12] presents a unified approach
to VMM, which will be given here.

Recall that the rank–one equation is symmetrical (in a sense defined in ??? 4.9), but
as we shall now see, the rank–two formula is not. Indeed the asymmetry suggests a
way to construct a possible third formula by taking the “mirror image” of the rank–
two formula. The basic idea is that the new formula should satisfy the fundamental
relationship

V1γ = δ,

and therefore its inverse should satisfy

γ = V−1
1 δ.

One can indeed write down the updating formula for V−1
1 which corresponds to the

rank–two formula for V1:

V−1
1 =

(

I − γδT

δTγ

)

V−1
0

(

I − γδT

δTγ

)T

+
γγT

δTγ

This matrix V−1
1 can now be thought of as a mapping from δ → γ, since γ = V−1

1 δ.
If γ and δ are interchanged in the formula, it will then give a mapping from γ → δ,
thereby producing a new updating formula where V1γ = δ. The new dual formula

will be just

V1 =

(

I − δγT

δTγ

)

V0

(

I − δγT

δTγ

)T

+
δδT

δTγ

If one tries this trick with the rank–one formula, one just gets the same rank–one
formula back again, since it is symmetric in this sense, or dual to itself. But with the
rank–two formula, the process of inverting and interchanging yields a new formula,
also of rank–two, which is also a valid updating formula in the sense that it gives
rise to a quadratically convergent VMM algorithm.

In a further step consider the class of formulas which includes both rank–two and
dual formulas as special cases. Introducing the notation

V1 = T(V0) for the rank–two formula,

and
V1 = D(V0) for the dual formula,

and consider the class of updating expressions as introduced by Fletcher [12]:

Vφ = (1 − φ)T + φD,

29

where φ is some parameter which determines the exact formula. (Broyden [13], using
a somewhat different notation, has also considered the same class of formulas.)

It then turns out that the rank–one formula is also in this class, with

φ(rank − one) =
δTγ

δTγ − γTV0γ

Having now constructed a wide class of updating formulas, which in fact include all
formulas known to the author, it will prove interesting to consider their properties
as a function of the generating parameter φ. Probably the most important property,
and the only one considered here, is that of monotonic convergence of V toward
the true covariance matrix for a quadratic function. (this is called Property 1 in
Fletcher’s paper [12] which should be consulted for details of the definition and for
theorems concerning it.) The use of an updating formula with this property will
guarantee an improvement in the approximation V at each iteration (for a quadratic
function).

Any formula Vφ with φ in the interval [0,1] possesses the monotonic convergence
property. Such a formula is said to belong to the convex class of formulas. For
any Vφ with outside range [0,1], there exists some quadratic function for which V
diverges from the true covariance matrix.

From what has already been seen from the rank–one formula, it is not surprising to
find that it does not belong to the convex class. Since δTγ > 0 for any step which
is an improvement, and since γTV0γ > 0 if V0 is positive–definite, it can be seen
immediately from inspection of the equation for φ(rank–one) that it must either be
less than zero or greater than one.

The above considerations lead Fletcher to propose an new algorithm [12] which
is probably the most elegant and powerful of any VMM algorithm. Basically, he
uses the general updating formula Vφ, with the value of φ chosen according to the
following scheme: If φ(rank–one)< 0, set φ = 0, corresponding to the usual rank–
two formula. If φ(rank–one)> 1, set φ = 1, corresponding to the dual formula. In
this way, one always uses a formula in the convex class, and chooses that one which
is “closest” to the rank–one formula. It seems that the linear searches can then
be eliminated and replaced simply by Newton’s steps, unless the function is highly
non–quadratic. The latter condition can easily be detected by comparing the actual
improvement with the expected improvement at each iteration.

30

5 Specialized techniques

All the methods outlined so far here are of rather general applicability, the only
assumption being — for some methods — a predominantly quadratic behaviour in
the immediate vicinity of the minimum. In order to develop more powerful methods
than those already presented, one will have to give up some of this generality and
exploit particular features of the functions to be minimized. In this section a few
specialized techniques are discussed which are still of rather wide applicability in the
sense that most functions of physical interest fall in one or more of these classes.

5.1 χ2 minimization

Probably the most common application of minimization in scientific research is in
least square fitting, where the function to be minimized is the sum of squares of
deviations, between measured values and predictions of a model containing variable
parameters:

F (x) =

K
∑

k=1

f 2
k (x) =

K
∑

k=1

(

Yk − Tk(x)

σk

)2

,

where Yk and σk are measured values and errors, and Tk(x) are the values predicted
by the model, depending on some parameters x. Minimizing F then yields best
values (estimates) of the n parameters x, based on K measurements Yk with random
errors σ, where K must be greater than or equal to n, and it is usually much greater
than n.

Now consider the second derivative matrix for F (x), expressed in terms of the indi-
vidual fk(x):

∂2F

∂xi∂xj

=
∂

∂xi

∂

∂xj

∑

k

f 2
k

=
∂

∂xi

∑

k

2fk

∂fk

∂xj

=
∑

k

2
∂fk

∂xi

∂fk

∂xj

+
∑

k

2fk

∂2fk

∂xi∂xj

.

In the above r.h.s., it is usual to make the approximation that the second sum,
involving second derivatives, is small compared with the first term involving products
of first derivatives. This is called linearization. (Note that it is the model T(x) that
is linearized, not the function F (x).) In the important special case of linear least

squares, the second sum is exactly zero, so that F (x) is quadratic, and the whole
minimization problem reduces to the inversion of the above matrix ∂2F/∂xi∂xj (i.e.
the taking of one Newton step).

31

In the more general case of non–linear least squares, the linearization approximation
consists in taking

∂2F

∂xi∂xj

≈
∑

k

2
∂fk

∂xi

∂fk

∂xj

.

This has the advantage of being easy to calculate and, moreover, it is always positive–
definite (under rather weak conditions such as the existence of the derivatives, and
provided non–singularity). In fact in many cases the use of the above approximation
in computing Newton steps is actually more effective than using the exact second
derivative matrix because of the positive definiteness. Of course it must be remem-
bered that the covariance matrix obtained by inverting this approximate matrix does
not in general converge to the true covariance matrix even though the minimization
based on it may converge to the true minimum.

5.2 Likelihood maximization

An increasingly important alternative to the least squares method in data fitting is
the method of maximum likelihood. In this case the function to be minimized is of
the form

F (x) = −
K
∑

k=1

ln fk(x),

that is, a sum of logarithms. Here again, an approximation for the second derivative
matrix can be found which envolves only products of first derivatives:

∂2F

∂xi∂xj

= − ∂

∂xi

∂

∂xj

∑

k

ln fk

= − ∂

∂xi

∑

k

1

fk

∂fk

∂xj

= −
∑

k

1

f 2
k

∂fk

∂xi

∂fk

∂xj

−
∑

k

1

fk

∂2fk

∂xi∂xj

.

As with least squares, one can neglect the second sum, involving second deriva-
tives. In the case of the likelihood function, the second derivatives of f are never
exactly zero over any finite range (exactly linear maximum likelihood does not exist,
essentially because the likelihood function must be normalized so that its integral
over the space of measurements is independent of the parameters x). However, the
approximation

∂2F

∂xi∂xj

≈
∑

k

1

k2

∂fk

∂xi

∂fk

∂xj

has the same advantages as in the non–linear least square case, namely speed of
calculation and assured positive–definiteness.

32

6 Local and global minima

6.1 The problem of multiple minima

All the methods presented so far have been designed to find a local minimum, with-
out any consideration of whether or not other local minima exist, or whether the
minimum found is actually the global minimum. If the function has more than one
local minimum, there is not even any guarantee that these methods will find the
minimum closest to the starting point, let alone the global minimum. In fact, it is
usually assumed, when using these algorithms, that the function is unimodal (has
one minimum) in the region of interest likely to be explored during the minimization.

Whenever the function may have more than one local minimum, new problems arise
in addition to the problem of local minimization. First of all, the user must decide
what he wants to know about the function. The following four possibilities are the
most common and will be discussed here:

i) it is sufficient to know the location of any one local minimum;

ii) only the global minimum is of interest;

iii) only one minimum is of interest (the ‘physical solution’), but it need not be the
global minimum; or

iv) all local minima, including the global one, must be found and catalogued.

The first possibility, (i), is quite rare, but is easy to deal with, since any local mini-
mization routine is sufficient.

Possibility (ii) is much more common, particularly in system optimization where
the cost must be the smallest possible, not just small compared with other near-
by solutions. Several methods exist for finding global minima, of which two will
be discussed in the next sections. All such methods suffer from the absence of a
stopping rule: even if the global minimum is found there is no way of recognizing it
unless the function is known to be bounded and has reached its lower bound.

Possibility (iii) often arises in scientific research where the approximate values of
some parameters are known in advance and one seeks a solution not too far from
these values, corresponding to ‘the right valley’ where the function may have several
faraway valleys which may be deeper. The usual technique for making sure of staying
in the right valley is first to fix the approximately known parameters at their assumed
values and minimize with respect to all other variables, then starting from this point
minimize in the entire variable space.

Possibility (iv), of having to find and record all local minima, is the most difficult
of all. It arises, for example, in energy-dependent phase-shift analyses where all
‘solutions’ are recorded at each energy, and a continuous set of solutions is sought, one
at each energy, which have a smooth energy dependence. Although the techniques

33

x0

x1

x2

a0

a1

a2
 x3

Fig. 13

described below may help in this problem, no exhaustive method is known to the
author except for the prohibitive one of using many starting points equally spaced
on an n-dimensional grid.

6.2 The Gelfand algorithm

Relatively few minimization methods are specifically designed for non-local search
in many parameters. Probably the most successful of the ad hoc stepping methods
is that of Gelfand [14]. It is non-local because it provides a natural way to allow for
function increases as well as decreases in any one step, while tending generally to
decrease the function value.

The procedure is as follows. From the starting point x0, a local minimization is begun
(for example along the gradient) until the function differences between steps become
small (at the point a0). Then, going back to the starting point, a ‘long’ random step
is taken to the point x1, and another rough local minimization is performed to reach
the point a1(see figure above). Then the so-called ‘precipitous step’ is taken along a
line from a0 to a1, some distance past a1 to x2. Then from x2 another rough local
minimization is performed, yielding a2, and another precipitous step is taken from
a1 past a2 to x3 and the search continues in this way.

The choice of the ‘precipitous step’ length is important in determining whether the
method will ‘roll over small ridges, but skirt a high mountain’, as its authors say
it should. But no precise way is given, except that ‘the choice of the length of
the precipitous step is carried out experimentally (by trials) and it constitutes an
important charactistic of the function’.

Moreover, there is no stopping rule, since the method is essentially searching rather
than converging. In practice one usually stops after a given length of computer time,
but one would also stop if the program went around in circles repeating itself (which
is very possible but not so easy to detect) or if a predetermined ‘acceptably small’
function value was attained. This problem of stopping seems to be common to all
non-local minimization methods.

34

6.3 The Goldstein–Price method

Goldstein and Price [15] have proposed an elegant yet simple method for seeking other
local minima after one local minimum has been found It is based on a consideration
of the analytic (Taylor series) properties of the function. Let us assume that the
function can be represented as a Taylor series about a local minimum x1, where the
first derivatives vanish:

F (x) = F (x)1 +
1

2
(x − x1)

TG(x − x1) + h.t. .

Now the higher terms (h.t.), involving third and higher derivatives, are important
since these are the terms that will give rise to other local minima. In fact, we seek
a way of transforming the function so that only the higher terms remain. Such a
transformed function is F1 such that:

F1(x1, x) =
2(F (x) − F (x1))

(x − x1)
TG(x − x1)

= 1 + h.t. .

By means of this transformation, we have ‘removed’ the minimum at x1, and the way
is cleared to search for other minima generated by the higher terms of the expansion
about x1. The method therefore consists of seeking a local minimum of the function
F1 (It is required to know the second derivative matrix G at the local minimum x1.)
Since the quadratic form (x − x1)

TG(x − x1) is always positive for positive-definite
G, th efunction F1 will become negative as soon as an improvement on x1 is found.
Then starting from this improved point, the original function F can be minimized
locally to yield a new, improved local minimum of F .

If the minimum value found for F1 is positive, then it may correspond to a new local
minimum of F , but not an improvement over x1.

In this case the procedure may be continued from this new point, forming a new
function F2, related to F1 just as F1 was related to F . As usual, no stopping rule is
given by the theory.

The method seems to work in practice, although experience with it is limited and
no conditions are known under which it is guaranteed to work. It is appealing for
reasons of its elegance and simplicity, and could prove to be an important tool in
global minimization.

35

7 Some sample problems for minimization rou-

tines

Here a collection of test problems is assembled which were found to be useful in
verifying and comparing minimization routines. Many of these are standard func-
tions upon which it has become conventional to try all new methods, quoting the
performance in the publication of the algorithm.

7.1 Rosenbrock’s curved valley

F (x, y) = 100(y − x2)2 + (1 − x)2

start point: F (−1.2, 1.0) = 24.20

minimum: F (1.0, 1.0) = 0 .

This narrow, parabolic valley is probably the best known of all test cases. The floor
of the valley follows approximately the parabola y = x2 + 1/200, indicated by the
dashed line in fig. 14. In the cross-hatched area above the dashed line, the covariance
matrix is not positive-definite. On the dashed line it is singular. Stepping methods
tend to perform at least as well as gradient methods for this function.
[Reference: Comput. J. 3, 175 (1960).]

7.2 Wood’s function in four parameters

F (w, x, y, z) = 100(x − w2)2 + (w − 1)2 + 90(z − y2)2

+ (1 − y)2 + 10.1[(x − 1)2 + (z − 1)2]

+ 19.8(x − 1)(z − 1)

start point: F (−3,−1,−3,−1) = 19192

minimum: F (1, 1, 1, 1) = 0 .

This is a fourth-degree polynomial which is reasonably well-behaved near the mini-
mum, but in order to get there one must cross a rather flat, four-dimensional ‘plateau’
which often causes minimization algorithm to get ‘stuck’ far from the minimum. As
such it is a particularly good test of convergence criteria and simulates quite well a
feature of many physical problems in many variables where no good starting approx-
imation is known.
[Reference: Unpublished. See IBM Technical Report No. 320–2949.]

36

MIN

⊕

START

⊕

Fig. 14

7.3 Powell’s quartic function

F (w, x, y, z) = (w + 10x)2 + 5(y − Z)2 + (x − 2y)4 + 10(w − z)4

start point: F (3,−1, 0, 1) = 215

minimum: F (0, 0, 0, 0) = 0 .

This function is difficult because its matrix of second derivatives becomes singular at
the minimum. Near the minimum the function is given by (w + 10x)2 + 5(y − 5)2

which does not determine the minimum uniquely.
[Reference: Comput. J. 5, 147 (1962).]

37

7.4 Fletcher and Powell’s helical valley

F (x, y, z) = 100{[z − 10Ψ(x, y)]2 + (
√

x2 + y2 − 1)2} + z2

where
2πΨ(x, y) = arctan (y/x) for x >0

= π + arctan (y/x) for x < 0

start point: F (−1, 0, 0) = 2500

minimum: F (1, 0, 0) = 0 .

F is defined only for −0.25 < Ψ < 0.75.

This is a curved valley problem, similar to Rosenbrock’s, but in three dimensions.
[Reference: Comput. J. 6, 163 (1963).]

7.5 Goldstein and Price function with four minima

F (x, y) = (1 + (x + y + 1)2 ∗ (19 − 14x + 3x2 − 14y + 6xy + 3y2))

∗ (30 + (2x − 3y)2 ∗ (18 − 32x + 12x2 + 48y − 36xy + 27y2))

local minima: F (1.2, 0.8) = 840
F (1.8,0.2) = 84
F (−0.6,−0.4) = 30

global minimum: F (0,−1.0) = 3 .

This is an eighth-order polynomial in two variables which is well behaved near each
minimum, but has four local minima and is of course non-positive-definite in many
regions. The saddle point between the two lowest minima occurs at F (−0.4,−0.6)
= 35, making this an interesting start point.
[Reference: Math. Comp. 25, 571 (1971).]

7.6 Goldstein and Price function with many minima

F (x, y) = exp

{

1

2
(x2 + y2 − 25)2

}

+ sin4(4x − 3y) +
1

2
(2x + y − 10)2

global minimum: F (3, 4) = 1 .

This function has ‘many’ local minima.
[Reference: Math. Comp. 25, 571 (1971).]

38

7.7 Quadratic function in four parameters

F (x, y, z, w) =
1

70

(

21x2 + 20y2 + 19z2 − 14xz − 20yz
)

+ w2

minimum:
F (0, 0, 0, 0) = 0

covariance matrix:








4 1 2 0
1 5 3 0
2 3 6 0
0 0 0 0









Except for the reasonably strong parameter correlations, this function poses no spe-
cial problem to any minimization routine. It was found useful in debugging programs
based on quadratically convergent methods, since these programs should minimize
the function exactly in one iteration. It is also used to check the calculation of the
covariance matrix.

A variation consists of adding |x|3 − 1 whenever |x| > 1, and similarly with the
other variables. This introduces in a reasonably smooth way terms which alter the
quadratic behaviour far from the minimum while leaving it unchanged inside the
unit cube, thus providing a test for those methods which are supposed to converge
to the correct covariance matrix by updating.

7.8 Chebyquad

F (~x) =

n
∑

i=1

{

∫ 1

0

Ti(x
′) dx′ − 1

n

n
∑

j=1

Ti(xj)

}2

where Ti(x) are shifted Chebyshev polynomials of degree i;

start point: xj = j/(n + 1) .

This function is designed to have a variable and possibly large number of parameters,
and to resemble functions encountered in actual practice rather than being contrived
to be especially difficult. Each term of F represents the squared difference between
the true integral of a polynomial of degree i and the integral estimated by Chebyshev
(equal-weight) quadrature on n points:

∫ 1

0

P (x) dx ≈ 1

n

n
∑

j=1

P (xj) .

The starting values correspond to equally spaced points xj which is not too far away
from the solution. Fletcher gives a complete Algol-coded, procedure for this function

39

in the reference quoted below.
[Reference: Comput. J. 8, 33 (1965).]

7.9 Trigonometric functions of Fletcher and Powell

F (~x) =
n
∑

i=1

{

Ei −
n
∑

j=1

(Aij sin xj + Bij cos xj)

}2

,

where

Ei =

n
∑

j=1

(Aij sin x0j + Bij cos x0j) .

Bij and Aij are random matrices composed of integers between -100 and 100; for j
= 1, ..., n: x0j are any random numbers, −π < x0j < π;

start point: xj = x0j + 0.1δj,−π < δj < π

minimum: F (~x = ~x0) = 0 .

This is a set of functions of any number of variables n, where the minimum is always
known in advance, but where the problem can be changed by choosing different
(random) values of the constants Aij, Bij, and x0j . The difficulty can be varied by
choosing larger starting deviations δj. In practice, most methods find the ‘right’
minimum, corresponding to ~x = ~x0, but there are usually many subsidiary minima.
[Reference: Comput. J. 6 163 (1963).]

40

References

[1] J. Kowalik and M.R. Osborne. Methods for unconstrained optimization prob-
lems. American Elsevier Publishing Co., Inc., New York, 1968.

[2] H.H. Rosenbrock. An automatic method for finding the greatest or least value
of a function. Comput. J., 3:175, 1960.

[3] R. Hooke and T.A. Jeeves. Direct search solution of numerical an statistical
problems. J. Assoc. Comput. Mach., 8:212, 1961.

[4] L.C.W. Dixon. Non-linear optimization. English Universities Press, London,
1972.

[5] J.A. Nelder and R. Mead. A simplex method for function minimization. Comput.

J., 7:308, 1965.

[6] G.W. Stewart. A modification of davidon’s method to accept difference approx-
imations of derivatives. J. Assoc. Comput. Mach, 14:72, 1967.

[7] R. Fletcher and C.M. Reeves. Function minimization by conjugate gradients.
Comput. J., 7:149, 1964.

[8] M.J.D. Powell. An efficient method for finding the minimum of a function of
several variables without calculating derivatives. Comput. J., 7:155, 1964.

[9] R. Fletcher and M.J.D. Powell. A rapidly converging descent method for mini-
mization. Comput. J., 6:163, 1963.

[10] W.C. Davidon. Variance algorithm for minimization. Comput. J., 10:406, 1968.

[11] M.J.D. Powell. Rank one methods for unconstrained optimization, appearing
in integer and non-linear programming. North-Holland Publ. Co., Amsterdam,
1970.

[12] R. Fletcher. A new approach to variable metric algorithms. Comput. J., 13:317,
1970.

[13] C.G. Broyden. Quasi-newton methods and their application to function mini-
mization. Math. Comput., 21:368, 1967.

[14] I.M. Gelfand and f.L. Tsetlin. The principle of non-local search in automatic
optimization systems. Soviet Phys. Dokl., 6:192, 1961.

[15] A.A. Goldstein and J.F. Price. On descent from local minima. Math. Comput.,
25:569, 1971.

41

