Firebird File and Metadata Security

Geoff Worboys

Version 0.6, 30 June 2020



Table of Contents

Table of Contents

. Introduction
. Background

. The Problem
. The Solution

4.1. Difficulties

4.1.1. Needs of the Access Layer

4.1.2. “Leaking” by Inference and Deduction
4.2. Protecting User Data

4.2.1. Encryption

4.2.2. Limiting the distribution of data

4.2.3. Removing SYSDBA access

4.2.4. Custom names for SYSDBA

4.2.5. Deleting stored procedure and trigger source code

5. Embedded Firebird Server
6. Other Forms of Obscurity

7.
8
9

Acceptable Low Security

. Choosing Obscurity
. The Philosophical Argument

10. Conclusions

11. Acknowledgements

Appendix A: Document History

Appendix B: Use of This Document

© © 0 00 J O OO o0 O o U1 W N

N S S T Y
0 g O Ul R W N R O



Chapter 1. Introduction

Chapter 1. Introduction

If you stumble on this page and don’t know about Firebird, see this link: www.firebirdsql.org

This article discusses the security of Firebird database files and in particular access to the metadata
stored in those files. It has been written in response to frequent questions on the Firebird lists
concerning these issues. The article avoids technical specifics. To discover how to secure files in
your particular operating system refer to relevant documentation for that operating system, to
discover how to apply user and object security in Firebird databases refer to documentation
available from the Firebird website (noted above) or buy The Firebird Book by Helen Borrie.


https://www.firebirdsql.org

Chapter 2. Background

Chapter 2. Background

For an application (user) to access a Firebird database it must connect to the Firebird server
process. On receiving a connect request the server process will authenticate the user credentials
against the server users defined in the security database. If authentication is successful the server
will allow the application access to any database that it requests and then use the roles and
privileges defined in that database to provide fine-grained access control to objects in that
database.

At no time does the user connecting to the database require direct access to the database file itself.
All access goes through the server process, which accesses the database file as needed to fulfil
requests. It is the server that restricts or allows access to the logged-in user, according to the
permissions defined for that user in that database.

The “embedded” variation of Firebird server works differently and would not be
appropriate for secure installations. The fact that the embedded server version

o exists does not really change the security issues discussed this article, it merely
highlights the importance of using effective environmental security in secure
installations. Embedded server is discussed in more detail later.

Every Firebird server installation has a “SYSDBA” user, this user has unrestricted access to any
database available to that server. Database specific privileges are effectively ignored when the
database is accessed using SYSDBA. When you first copy a database onto a server you can use
SYSDBA to customise the privileges according to the users and requirements of the server.
However, it also means that, if I have direct access to a database file, I can copy that file from a
server where I may not know the SYSDBA password onto a different server where I do know the
SYSDBA password and so gain unrestricted access to the database.

As you can see from this description, Firebird security is predicated on the assumption that the
Firebird server process will be running in an adequately secure environment. Firebird itself takes
no precautions to provide external security. Once a person has physical access to a database file
there is no effective way to prevent that user from reading all data (and metadata) within that file.

o “Adequate” security is dependent on the level of security required for a particular
installation. This will vary considerably from installation to installation.

This means that, for reasonable security, installations should ensure that the database files are
adequately secured. In most cases this means that the Firebird server process should run as its own
specific operating system user and only that user (and probably the administrator/root user) should
have direct operating system access to the database files. The database files should not be located in
directories that are accessible from the network, or by any local users other than specifically
authorised personnel.

For the security to be effective it is also preferred that the server computer is stored in a secure
location to prevent physical tampering that could permit unauthorised users to access the hard disk
from beyond the strictures of the operating system.

However, the above explanation does not necessarily help developers who, having written



Chapter 2. Background

databases for distribution and installation to remote sites, may wish to protect the intellectual
property carried in their databases. Such concerns may include specifically the metadata (table
structures and relationships, stored procedures and triggers) but may also include specific data
carried in some tables. These concerns represent the main purpose of this article.



Chapter 3. The Problem

Chapter 3. The Problem

A developer creates a database (and usually an accompanying client application) for installation on
servers at remote sites. At such sites it is usual for a person at that site to have full access to the
computer on which the Firebird server is running —in order to be able to perform backups and
other maintenance tasks. As described in the background information, direct access to the database
file provides the ability to gain full and unrestricted access to all the information in the
database —both data and metadata.

In such cases the developer may not trust the users at these remote sites to keep the intellectual
property represented by the database confidential. The fear may be that the users will reverse-
engineer the database for their own purposes, or that these remote sites will fail to maintain the
security necessary to prevent unauthorised access to the database.

This leads to the common questions on the Firebird lists along the lines of:

“I want to...”

“...protect my database design (table structures, stored procedures, triggers etc.) from all users of
the database at a remote installation. How can I do this with Firebird?”

“I want to...”

“..stop any users at a remote installation from accessing these particular tables of data. They
contain proprietary information used internally by the application.”

Firebird (at least to v1.5) provides no built-in encryption facilities. The simple answer to both of
these questions is that it cannot be done using the current capabilities of Firebird. A user who can
get direct access to the file gains access to all details within that file.

In the first instance no workaround is feasible because the server itself must be able to read the
metadata. In the second instance it may be possible to implement client side encryption/decryption
features, but then you will lose the ability to make effective use of database indexes and search
facilities— and key management remains a major problem (more below).



Chapter 4. The Solution

Chapter 4. The Solution

There is really only one possible solution to these requests: Host the database and server at your
own site and let the clients connect to your server remotely, through dial-up or Internet facilities
etc. Terminal server (Windows or Linux/Unix) capabilities could be a useful way to implement such
requirements.

In this way you maintain control over the database file and can restrict access to the various
features and structures of your database using the usual Firebird internal security features (roles
and privileges, etc.).

4.1. Difficulties

It is worth pointing out that there are difficulties even in this situation, if your intention is to
protect the structure of your database.

4.1.1. Needs of the Access Layer

Various database development libraries interrogate metadata, such as primary key, domain and
similar structural information, in order to make development of client applications easier.
Consequently, you may discover that you cannot prevent users from accessing metadata without
also preventing your application from gathering the information that it requires.

This may mean that you will need to choose between allowing metadata details to escape from your
server via a sophisticated data access interface and spending the considerable extra time it takes to
develop an application using a less sophisticated access library.

4.1.2. “"Leaking” by Inference and Deduction

There is also the issue that most client applications inherently “leak” structural information about
the database with which they interact. It is very rare for a database-centric application to have an
interface that does not reveal many details about the table structures that it uses.

Some details may be hidden behind views and selectable stored procedures, but defining such
features purely to try and hide structural information is an exercise in frustration. It is probably
futile, anyway, since some details will escape, whatever you try.

4.2. Protecting User Data

Before continuing with other discussions relating to encryption of Firebird data, I do want to
highlight that it is possible for users to protect their databases with encryption. This does not help
developers who want to hide information from legitimate users, but it may help to meet the
requirements of customers wanting to increase the security of their databases.

In some office situations it may not be practicable to locate the Firebird server computer in a truly
secure environment. During times when the office is attended the likelihood that anyone will be
able to access the computer to copy the database files (or steal the computer or hard disk to get the
files later) may be quite low. However, out of normal working hours (nights and weekends) it may



Chapter 4. The Solution

be a different matter. Someone could gain access to the office, take the hard disk out of your
computer (or take the entire computer) and take it away to access the database.

4.2.1. Encryption

While Firebird itself provides no built-in encryption features there are some excellent products that
do. You could install software that creates an encrypted volume on your computer and locate the
database file (and any other confidential data) on that volume. When the computer is shut down all
data exists in an encrypted file and cannot be accessed without the key. When you start the
computer you have to mount the encrypted volume and supply the secret key before the data can
be accessed. This additional, and necessarily manual, step in the start up process may be
inconvenient, but it can provide excellent security for unattended computer systems.

Software with these capabilities includes: TrueCrypt (www.truecrypt.org), Bestcrypt from Jetico
(www.jetico.com) and PGPDisk (www.pgpi.org/products/pgpdisk/ —note that this link goes to an old
freeware version, that site has links to newer commercial versions of the product). There are
others, but the last two are ones that I have used myself.

Why doesn't Firebird provide encryption?

Because of the needs described above it is common for users to request that Firebird should, in a
future version, add the ability to encrypt metadata, selected user data, or even the entire database.
Not being a Firebird core developer, I cannot say categorically that it will not happen. However, the
issue is not really whether encryption is practicable or useful, but a matter of whether key
management would provide a solution to the problems we are examining.

Encryption can only be as good as the secret key required for decryption. It can be worse, but it
cannot be better. There are several excellent encryption algorithms available that could be used.
When good encryption is used, attacks are likely to be against the key rather than against the
encryption itself.

How could encryption work?

So, let’s look at how things would work if Firebird were to encrypt the metadata in a database...

Before the database could be accessed the secret key would need to be supplied. Giving the
decryption key to the user would be pointless, simply bringing us back to the original problem. So,
presumably, whenever the customer restarts the server they would call the developer who would
then dial in and enter the needed key. Even if this were practicable, it is not necessarily going to
solve the problem. For example, the customer could install some monitoring software on their
server to detect the key as it is entered.

There are hardware based solutions to provide a key to a decryption process. But again this would
need to be in possession of the client, and if we don’t trust the client we can’t stop them from using
it to gain access to the database from another server where the SYSDBA password is known.

Firebird is an open source product. If the encryption facilities were built in, or open source plug-in
libraries were used, it would be feasible for users to build their own versions of the server or plug-
in that not only performed the necessary encryption and decryption to access the protected
database but also output the key, or simply output the decrypted details directly. The developer, not


http://www.truecrypt.org
https://www.jetico.com
http://www.pgpi.org/products/pgpdisk/

Chapter 4. The Solution

being in control of the server, can neither detect nor prevent such activity.

You might consider building your own version of the Firebird server with the decryption key
hidden in the executable. However, decompilers are available. It would not take long to discover
the key simply by comparing the decompiled versions of your custom Firebird build with the
normal, unencrypted version.

Various database products do exist which purport to provide strong encryption. Perhaps the
encryption is strong but, unless the key management is in place to support this feature, the
encryption is not going to achieve the desired effect. It may encourage you to believe you are
protected, but you need to study the key management to discover if this is really true.

The painful truth is that, once you lose control of the hardware on which the encryption and
decryption takes place, all bets are off. If the decryption key cannot be kept reliably secure then
even good encryption becomes little more than security by obscurity.

4.2.2. Limiting the distribution of data

Some people request encryption of the database data so that they can try and limit the
dissemination of data. They are happy for the particular authorised user to see the data, but they
wish to limit that user’s ability to distribute the data to other people.

Just imagine for a moment that all the key management problems described above have been
solved, so that it has become impractical for the user to just copy the database. In such cases the
user would simply write a small program that extracted the data they were interested in (from the
legitimately installed server) and copied that data to its own file or database.

I guess it is possible that Firebird might provide some form of application authentication system in
the future that may make it possible to limit this form of data extraction, however most of the same
problems exist. If you do not control the server you cannot prevent the user from installing a
version of the server that does not require the authentication.

4.2.3. Removing SYSDBA access

At various times people have suggested that removing SYSDBA access to a database could be the
solution. The idea behind it is that, when the database is moved to a new server where the SYSDBA
password is known, it will not help the person because SYSDBA does not have access anyway. Some
have reported limited success in this respect by creating an SQL role name of SYSDBA and making
sure it does not have access to the database objects.

However it does not really solve the problem. The database file can be viewed with a hex viewer or
similar utility and the list of available user names discovered. (Discovering the owners of the
database objects would be particularly useful.) Once known, these names can be added to the new
server and used directly.

An even simpler workaround might be to use the embedded version of Firebird server (see below)
or to compile your own version of the Firebird server that ignores security constraints.



Chapter 4. The Solution

4.2.4. Custom names for SYSDBA

There has been some suggestion about allowing the SYSDBA user name to be changed. This may
offer some limited protection against brute-force network attacks against the SYSDBA password,
since such attacks would need to guess both the user name and its password, but it does not help
protect the system from a person with direct access to the database file.

4.2.5. Deleting stored procedure and trigger source code

When you write and define a stored procedure or trigger for a Firebird database, the server stores
an almost complete copy of the procedure source code along with a “compiled” copy referred to as
BLR (Binary Language Representation). It is the BLR that is executed by the server, the source code
is not used.

Some developers attempt to protect at least some of their database metadata by deleting the source
code from the database before distributing the database (a simple direct update against the
relevant metadata table fields). I recommend that you don’t do this for two reasons...

1. BLR is a fairly simplistic encoding of the source code. It would not be difficult to decode the BLR
back to a human readable form. Such a decoding would be without comments and formatting,
but the SQL that goes into a stored procedure or trigger is rarely so complicated that this would
cause much of a problem. Hence the protection offered by the removal of source code is not
very significant.

2. The source code can be useful for other purposes. It allows fixes to be applied directly to the
database without needing to bring in the full source from elsewhere (and then remembering to
remove it again when the fix is applied). The source code is also used by various utilities, such
as my own DBak application — an alternative backup program to “gbak”. I have not bothered to
write my own BLR decoder at this stage, so DBak relies on the availability of the source code in
order to be able to build a DDL script to reconstruct a database.



Chapter 5. Embedded Firebird Server

Chapter 5. Embedded Firebird Server

There is a special version of the Firebird server referred to as “embedded”. This is a special client
library that includes the server itself. When an application links to this library it loads the server
and allows direct access to any database that is accessible on the local computer. This version of the
server does not use a security database. The user name specified during the “logon” (no password
authentication occurs) is used to manage user access to database objects (via SQL permissions) but
if that user name is SYSDBA (or the owner of the database) then unrestricted access is possible.

The features of embedded are useful for developers wanting to create easy to distribute single-user
applications that do not need security.

From that brief description it appears that having an embedded server client installed on a server
hosting other databases could present itself as a major security risk. In reality the risk is no greater
than if the embedded client did not exist.

When an application loads the embedded server, the server operates in the application (and
therefore the user’s) security context. This means that the embedded server will only be able to
access database files that the user could access directly through the operating system. Giving an
untrusted user access to install programs on a secure server is bad news in any case, but provided
you have specified appropriate file permissions on secure databases, the embedded server itself is
no threat.

The threat comes from all the other things that the user could install.

The fact that the embedded server exists only serves to highlight what is possible given direct
access to a database file, especially in an open source environment. If it did not already exist then it
would certainly be possible for someone to compile an equivalent capability.

10



Chapter 6. Other Forms of Obscurity

Chapter 6. Other Forms of Obscurity

Various other forms of security by obscurity have been proposed. Such things as special events that
fire on login and log off to call user functions to prevent or deny access. Such features may offer
some limited use for closed source systems, where the obscurity of the implementation helps to
hide exactly how information is being protected. But for an open source system the work around
for such hacks is to simply build your own version of the server that bypasses the event or code
which is preventing access. It is difficult to offer obscurity in an open source system.

Consider also what happens when you distribute your compiled executables. Compiled programs
are great examples of obscurity. No encryption is used (usually), all steps of the code are there to be
analysed by anyone with the time and knowledge and, indeed, there are decompilers available to
assist with this process. Once a person discovers what libraries your code was compiled with,
isolating the results to only your own “secret” code makes the whole process much faster. Have you
written to Borland, Microsoft or whoever requesting that they somehow encrypt their compiled
binaries?

11



Chapter 7. Acceptable Low Security

Chapter 7. Acceptable Low Security

My comments so far have been directed at the idea of strong security and I guess the concept of
security by obscurity has been written with some contempt. However at times weak security is all
that you want. Sometimes the data is just not that valuable. You want to stop the casual browser
and make it at least inconvenient for the more advanced thief.

I have used such schemes myself in various places. Often there is no point in throwing Twofish, AES
or whatever at such schemes because those are all about strong encryption. They are heavy with
processing overhead and complication relating to keeping the security strong. A simple XOR against
some known string (the key) may be sufficient. If the key can be discovered by the thief then it does
not matter whether you have used weak or strong encryption, the game is over anyway.

o Most simple XOR based algorithms can be broken with little effort. Consult a good
encryption reference for more information and other options.

12



Chapter 8. Choosing Obscurity

Chapter 8. Choosing Obscurity

The thing about security by obscurity is that it must be obscure! If Firebird were to implement
some sort of encryption into its disk reads and writes then it would not be obscure because it is an
open source project. It would take almost no time at all to recompile the source to discover the key
being provided and everything is lost.

So if you really needed this feature you would obtain the Firebird source, insert your own
obscuring code into the disk read and write methods and compile your own variation of the
Firebird server. (Such code could be discovered by decompiling the executable but it does take a
fairly serious thief to try this.)

Before you do this, try to work out whether it would actually solve your problem, if the user also
takes a copy of the specially compiled executables along with the database; or if it remains possible
for a user to extract the secrets directly from your running server.

13



Chapter 9. The Philosophical Argument

Chapter 9. The Philosophical Argument

There is also the philosophical question of why you would choose an open source database server
product to build a closed source database. Many people have contributed to the project in the firm
belief that open source is the best way to provide software.

But, more particularly, when it comes to the storage of users' data I am a firm believer that the
users should insist on the ability to access their own data— which will often include the need to
understand the structures and the processes you have built (the metadata). If you go out of business
or become otherwise unavailable it may be of critical importance that the users can at least extract
their own data (in appropriate formats) in order to be able to move to alternative systemes.

Can you trust the users to respect your intellectual property while you are still in business and
available? Provide the necessary services and facilities and hopefully they will. If not, there is a
good chance that there is little you can do to stop them.

14



Chapter 10. Conclusions

Chapter 10. Conclusions

The problem has been that too many people do not understand security and how difficult it is to do
well. Regrettably there have been many software products that have encouraged such
misunderstandings by implementing obscurity rather than true security. Witness the number of
companies around that provide “data recovery” services, by which they mean bypassing or
breaking the supposed security of obscured data.

Encryption is not a panacea for security. If you are not in control of the environment (the
hardware, the operating system and all software running on that system) then you have no control
over the security —regardless of what encryption schemes you may have in place. This is the
situation when you distribute your database to remote server installations.

If you really need to protect the data or metadata in your database then you will need to retain
control of the database file and the environment in which it is accessed. No other solution will offer
you the same level of security.

15



Chapter 11. Acknowledgements

Chapter 11. Acknowledgements

I would like to thank the various people that have reviewed and commented on this article. I would
also like to thank the many people that contribute to the Firebird support list, which is the source of

much of the information that appears in this article.

16



Appendix A: Document History

Appendix A: Document History

The exact file history —starting at version 0.5—is recorded in the firebird-documentation git
repository; see https://github.com/FirebirdSQL/firebird-documentation

Revision History

N/ 14 Feb G First edition.

A 2005 w

N/ 11 Apr G The section on “Acceptable low security” was reviewed to try and highlight

A 2005 W simple XOR algorithms as weak to ensure that readers investigate further if
interested in this approach.

N/ 26 Apr G Additional section on Embedded server (and references to it). Moved footnote

A 2005 W into an italic note, footnotes don’t work well with HTML. Added a TOC.

N/ 4 Dec G Added reference to TrueCrypt. Added Use of this Document section. Added an

A 2005 W Acknowledgements section.

0.5 7 Dec PV Moved Document History and Use of This Document into appendices. Added
2005 version number for use within the Firebird project. Added document to
Firebird CVS repository.

0.6 30]Jun MR Conversion to AsciiDoc, minor copy-editing
2020

17


https://github.com/FirebirdSQL/firebird-documentation

Appendix B: Use of This Document

Appendix B: Use of This Document

I have tried to make this document accurate at the time of writing but I cannot guarantee that there
are no mistakes. Security is a complex subject, where security is important to your product or
installation you should seek professional advice.

I place no particular restrictions on the use of this document. You are free to reproduce, modify or
translate this document. However, altered versions of the document should be annotated with the
changes that have been made and the name of author of the change (so that my name is not
associated with text that I did not write). --G.W.

18



	Firebird File and Metadata Security
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Background
	Chapter 3. The Problem
	Chapter 4. The Solution
	4.1. Difficulties
	4.1.1. Needs of the Access Layer
	4.1.2. “Leaking” by Inference and Deduction

	4.2. Protecting User Data
	4.2.1. Encryption
	Why doesn’t Firebird provide encryption?
	How could encryption work?

	4.2.2. Limiting the distribution of data
	4.2.3. Removing SYSDBA access
	4.2.4. Custom names for SYSDBA
	4.2.5. Deleting stored procedure and trigger source code


	Chapter 5. Embedded Firebird Server
	Chapter 6. Other Forms of Obscurity
	Chapter 7. Acceptable Low Security
	Chapter 8. Choosing Obscurity
	Chapter 9. The Philosophical Argument
	Chapter 10. Conclusions
	Chapter 11. Acknowledgements
	Appendix A: Document History
	Appendix B: Use of This Document

